Chemical factors determine olfactory system beta oscillations in waking rats.

نویسندگان

  • Catherine A Lowry
  • Leslie M Kay
چکیده

Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How global are olfactory bulb oscillations?

Previous studies in waking animals have shown that the frequency structure of olfactory bulb (OB) local field potential oscillations is very similar across the OB, but large low-impedance surface electrodes may have favored highly coherent events, averaging out local inhomogeneities. We tested the hypothesis that OB oscillations represent spatially homogeneous phenomena at all scales. We used p...

متن کامل

How global are olfactory bulb oscillations ? 1 2 Leslie

29 30 Previous studies in waking animals have shown that the frequency structure of olfactory bulb 31 (OB) local field potential oscillations is very similar across the OB, but large low-impedance 32 surface electrodes may have favored highly coherent events, averaging out local 33 inhomogeneities. We tested the hypothesis that OB oscillations represent spatially homogeneous 34 phenomena at all...

متن کامل

224 CHAPTER 9 Circuit Oscillations in Odor Perception and Memory

Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40–100 Hz in rats and mice, and 20 Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and...

متن کامل

Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat.

Fast oscillations in the beta (15-40 Hz in awake rats) and gamma (50-100 Hz) frequency ranges are prominent in field potentials induced by odorants in the mammalian olfactory bulb (OB) and piriform cortex (PC). Whereas the gamma oscillation has been studied for >50 yr, the beta oscillation has attracted attention only recently, and its origin, mechanism, and relationship to gamma are unknown. T...

متن کامل

Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task.

The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 1  شماره 

صفحات  -

تاریخ انتشار 2007